

Muscat Conference

Crowne Plaza Muscat, Tuesday, December 8, 2015

Aligning Safety, Security and Aesthetics in Architectural Openings

Altaf A. Afridi

Regional Marketing Director – MENA, DORMA

Email: altaf.afridi@dorma.com

Welcome

Course Description

Architectural openings are more about Life Safety than egress and fire rating only. The automatic and manual revolving, sliding or swing door can be hazardous for users unless properly designed as per relative standards and codes. More so when we deal with frameless glass assemblies and the user group includes disabled, elderly people and children. Also, adding security hardware may cause safety issues for doors.

While taking care of all these issues, the same doors are one of the main aesthetic elements in architectural and interior design and a balance is always needed to align all these aspects.

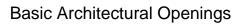
The presentation will focus on these points and will provide some case studies, how such challenges were resolved.

Presenter

Altaf Afridi,

Regional Marketing Director (MENA) and head of the Project Management Team,

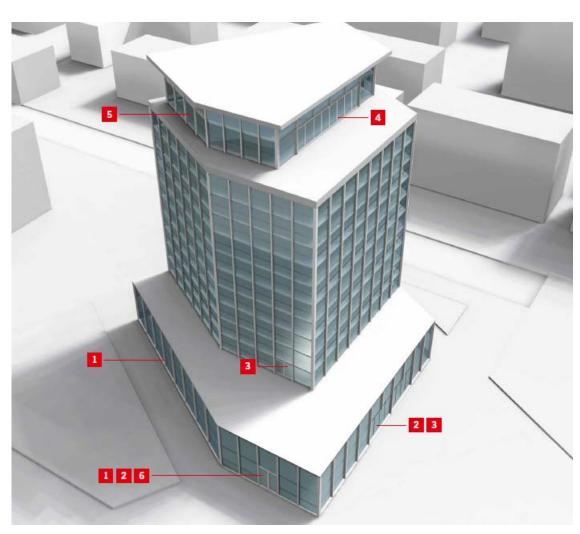
Based in United Arab Emirates, a Civil Engineer having 15 years of extensive experience in Architectural hardware and openings industry of his total 20 years of experience. Specialist of fire rated doors, first certified FDAI (Fire Door Assembly Inspector) outside US, certified Project Management Professional (PMP), LEED AP and Life Safety code (NFPA 101) specialist.


While working with architects Mr. Afridi has learnt NFPA 101 Life Safety Code, NFPA 80 Standard for fire doors from them while providing related solutions and thus gained a good data base of lessons learnt. He has been doing presentations on Life Safety code at architect offices in UAE, Saudi Arabia, Jordan, Lebanon and Qatar. He has been assisting architects providing solutions at the design stage for doors, doors hardware, movable walls, glass fittings and access control products.

Learning Objectives

- 1. Safety Risks related to different types of Architectural openings.
- 2. Solutions in conformance to related Standards and Codes.
- 3. Case Studies: Solution with Safety, Security and Aesthetics.

- The purpose of this presentation is to convey technical knowledge to the conference participants.
- The presentation also contains slides with text that summarises the content of the presentation and the main learning objectives.
- These may be used to update CPD records for relevant organisations including the Chartered Institute of Building (CIOB).



Basic Architectural Openings - Doors

- A moving structure used to block off, and allow Entrance to or Exit from a space for <u>Privacy</u>, <u>Convenience</u>, <u>security</u> and <u>safety</u> reasons.
- Helps in controlling
 - o Air Drafts,
 - Smoke and Fire
 - Noise Barrier.
 - Security
 - Component of Means of Egress

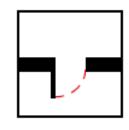
in Architectural Openings

Aligning Safety, Security and Aesthetics

Basic Architectural Openings - Doors

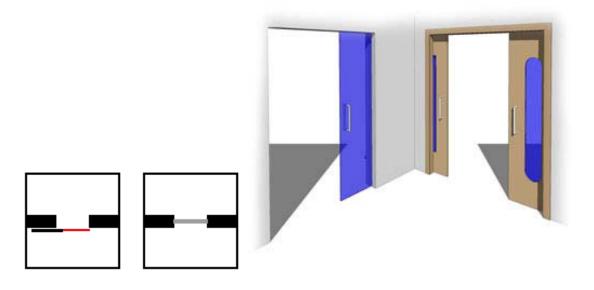
- A moving structure used to block off, and allow Entrance to or Exit from a space for Privacy, Convenience, security and safety reasons.
- Helps in controlling
 - o Air Drafts.
 - Smoke and Fire
 - Noise Barrier.
 - Security
 - Component of Means of Egress

http://www.safetydesigninbuildings.com/manama13/presentation/5.%20Altaf%20Afridi.pdf



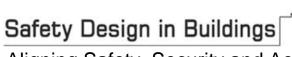
Basic Architectural Openings – Door Types

- Types of mechanism
 - Swing doors
 - Sliding doors
 - Revolving doors



- Types of mechanism
 - Swing doors
 - Sliding doors
 - Revolving doors

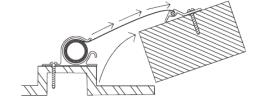
- Types of mechanism
 - Swing doors
 - Sliding doors
 - Revolving doors



Safety Concerns of SWING DOORS

A closing door can exert up to **40 tons per square inch** of pressure between the hinges.

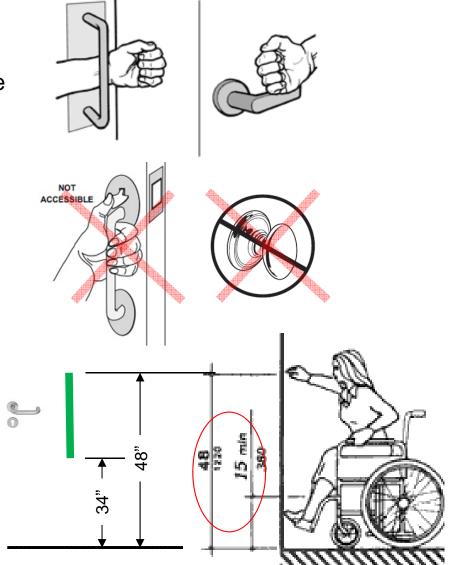
Aligning Safety, Security and Aesthetics in Architectural Openings



Safety Concerns of SWING DOORS

Finger Pinching

Aligning Safety, Security and Aesthetics in Architectural Openings

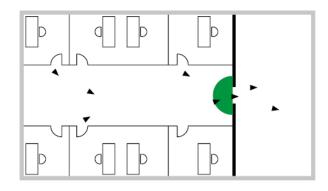

Safety Concerns of SWING DOORS

Door Hardware:

Members in Society with Disabilities and old age people

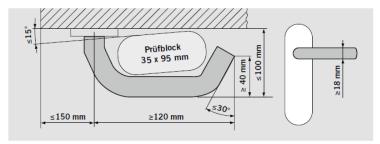
- Shape
 - No tight:
 - X Grasping,
 - X Pinching, or
 - X Twisting of the wrist.
- Located **34**" to **48**" ((865mm to 1220mm)

5 seconds minimum closing time form 90 to 12 degree


ADA-ANSIA A117.1

Aligning Safety, Security and Aesthetics in Architectural Openings

Safety Concerns of SWING DOORS


Door Furniture

EN 179 – Emergency exit devices operated by a lever handle

Relevant dimensions to EN 179:2008

The gauge block, angle $\leq 15^{\circ}$ with respect to the door surface, must pass between the lever handle and the door.

The certified lever handles are marked with an **E**.

- EN 1634-1: Fire resistance tests for door and shutter assemblies
 - DIN 18273: Lever handle units for fire doors and smoke control doors
- E EN 179: Emergency exit devices operated by a lever handle or push pad

- Particularly suitable for hospitals, senior homes and care institutions, as well as other applications requiring barrier-free accessibility (simple elbow actuation)
- Braille available as option for material indicated
- Stainless steel
- Aluminium



Aligning Safety, Security and Aesthetics in Architectural Openings

Safety Concerns of SWING DOORS

Door Furniture

OGRO 8353

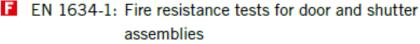
OGRO 8130

OGRO 8354

OGRO 8140

OGRO 8437

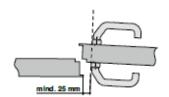
OGRO 8141


OGRO 8527

DIN 18273: Lever handle units for fire doors and smoke control doors

- E EN 179: Emergency exit devices operated
 - by a lever handle or push pad

- Particularly suitable for hospitals, senior homes and care institutions, as well as other applications requiring barrier-free accessibility (simple elbow actuation)
- Braille available as option for material indicated
- Stainless steel
- **Aluminium**


Aligning Safety, Security and Aesthetics in Architectural Openings

Safety Concerns of SWING DOORS

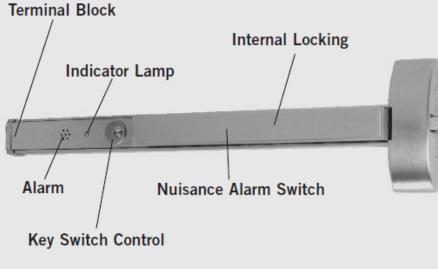
Door Furniture

Please note: A minimum clearance of 25 mm must be maintained between the lever handle and the frame stop.

- EN 1634-1: Fire resistance tests for door and shutter assemblies
 - DIN 18273: Lever handle units for fire doors and smoke control doors
- E EN 179: Emergency exit devices operated by a lever handle or push pad

- Particularly suitable for hospitals, senior homes and care institutions, as well as other applications requiring barrier-free accessibility (simple elbow actuation)
- Braille available as option for material indicated
- Stainless steel
- Aluminium

퉲怕


Safety Concerns of SWING DOORS

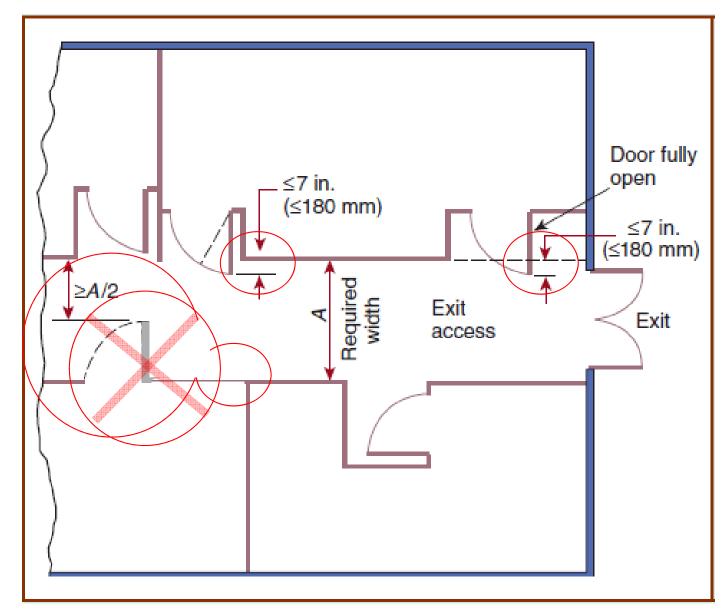
Locking Fire Escape door

PUSH UNTIL ALARM SOUNDS. DOOR CAN BE OPENED IN 15 SECONDS

DORMA DE9000 Delayed Egress Panic Bar

Source:

NFPA 101: Life Safety Code



Safety Concerns of SWING DOORS

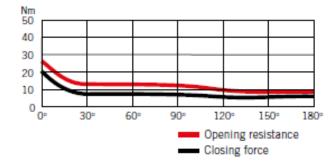
Door Leaf Encroachment

NFPA 101 Life Safety Code

Aligning Safety, Security and Aesthetics in Architectural Openings

Safety Concerns of SWING and SLIDING DOORS

- Floor Level.
 - The elevation difference of the floor surfaces not to more than 1/2".
 (13mm) on both sides of the door openings for a door leaf width.
 - Thresholds at door openings shall not exceed 1/2". (13mm) in height. (NFPA & ADA)
 - Raised thresholds and floor level changes in excess of 1/4 in. (6.3 mm) at door openings shall be beveled with a slope 1 in 2. (NFPA & ADA)



Safety Concerns of SWING and SLIDING DOORS

Door Leaf Operating Forces.

NFPA 101 Life Safety Code:

The forces required to fully open door leaf <u>manually</u> in a means of egress shall <u>Maximum</u>:

- 1. 30 lbf (133 N) to set the leaf in motion, and
- 2. 15 lbf (67 N) to open the leaf to the minimum required width.

ADA - ANSI/ICC A117.1 Accessible and Usable Buildings and

The force for pushing or pulling open a door or gate <u>other than fire doors</u> shall be **5 lbf (22.2 N)** <u>Maximum</u>

NFPA 80 Standard for Fire openings

To ensure door is in closed position during fire, requires Minimum Door Closer of Size-3.

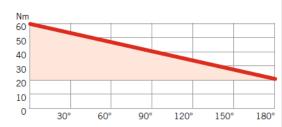
NFPA 101 NFPA 80 ADA-ANSIA A117.1

Aligning Safety, Security and Aesthetics in Architectural Openings

Safety Concerns of SWING DOORS

Door Leaf Operating Forces.

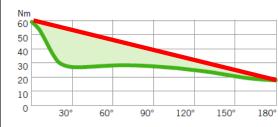
Door Closer Technology



Rack and Pinion Type

Standard slide channel door closer Without EASY OPEN: asymmetric gearing

Linear decrease in opening resistance

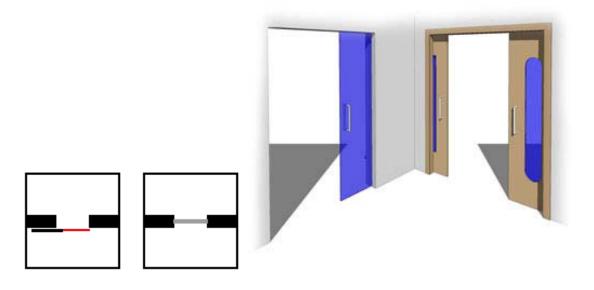


CAM Action Technology

DORMA slide channel door closer with EASY OPEN technology featuring the heart-shaped cam

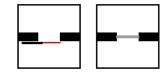
Rapidly decreasing opening resistance

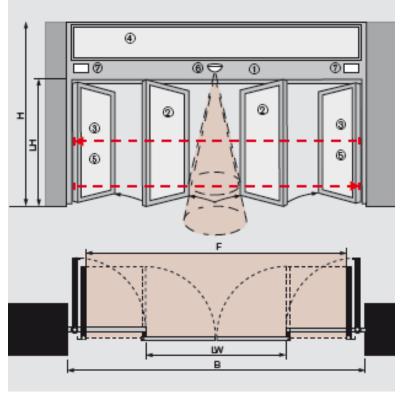
Reduction in opening effort thanks to EASY OPEN cam-action technology



Basic Architectural Openings – Door Types

- Types of mechanism
 - Swing doors
 - Sliding doors
 - Revolving doors




Aligning Safety, Security and Aesthetics in Architectural Openings

Safety Concerns of **SLIDING DOORS**

- Power operated Automatic Sliding door with Break out feature.
 - NFPA 101 The break out feature should require max force of 50 lbf (222N) force to swing open the door, a door need to have a sign 'IN EMERGENCY, PUSH TO OPEN'.
 - DIN 18650, BS 7036 and EN16005 German, BS and EN standards for Automatic Sliding doors, require breakout force of 220N.
 - AS 5007, Australian standard for Automatic doors requirement is 110N (half of others)

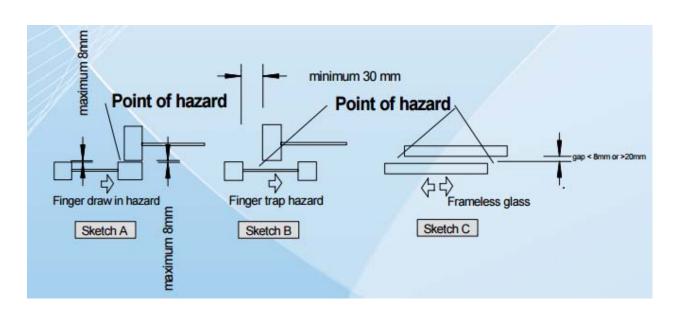
- 1. Self-supporting transom including operator with integrated control unit
- 2. Break-out door leaves with toughened or laminated safety glass
- 3. Break-out side screens
- 4. Fanlight or cover
- 5. Safety light barriers
- 6. Activator, e.g. radar motion detector or Sensors
- 7. Secondary closing edge protection according to the DIN 18650

LW= Clear opening width

F = Escape route width

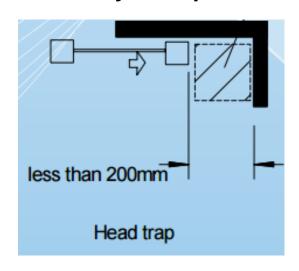
B = System width

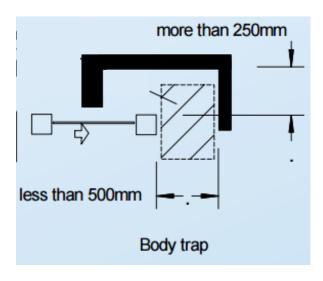
LH= Clear passage height


H = System height

Safety Concerns of **SLIDING DOORS**

Finger draw in or Finger trap Hazards


Aligning Safety, Security and Aesthetics in Architectural Openings



Safety Concerns of **SLIDING DOORS**

__-

Head & Body Entrapment Hazards

Automatic Doors:

Standards:

European

 DIN 18650, BS 7036 and EN16005. German, BS and EN standards for Automatic Sliding doors,

<u>Australian</u>

o AS 5007, Australian standard for Automatic doors

North American

- o ANSI/BHMA A156.10, Power Operated Pedestrian Doors
- ANSI/BHMA A156.19, American National Standard for Power Assist and Low Energy Power Operated Doors,

The American Association of Automatic Door Manufacturers (**AAADM**) is a trade association of power-operated automatic door manufacturers. It raise public awareness about automatic doors and administer a program to certify automatic door inspectors.

Aligning Safety, Security and Aesthetics in Architectural Openings

Basic Architectural Openings – Door Types

- Types of mechanism
 - Swing doors
 - Sliding doors
 - Revolving doors

Safety Concerns of REVOLVING DOORS

Cocoanut Grove fire

The front of the Cocoanut Grove nightclub after the fire

Time Around 10:15 P.M.

Date November 28, 1942

Location Bay Village, Boston, Massachusetts,

United States

Cause Ignition of synthetic palm tree

decorations

Deaths 492

The Cocoanut Grove club was the scene of the deadliest fire in US history, killing 492 people

The building's main entrance was a Revolving door.

Bodies piled up behind both sides of the revolving door, jamming it to the extent that firefighters had to dismantle it to enter.

Safety Concerns of REVOLVING DOORS

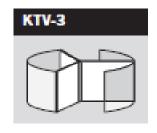
Cocoanut Grove fire

The front of the Cocoanut Grove nightclub after the fire

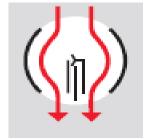
Time Around 10:15 P.M.

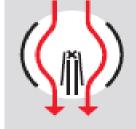
Date November 28, 1942

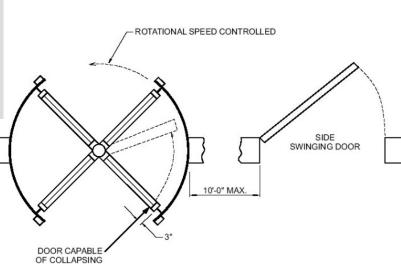
Location Bay Village, Boston, Massachusetts,


United States

Cause Ignition of synthetic palm tree


decorations


Deaths 492


Revolving doors shall be capable of being collapsed into a book-fold position when a force not exceeding 130 lbf (580 N) is applied to the wings



Aligning Safety, Security and Aesthetics in Architectural Openings

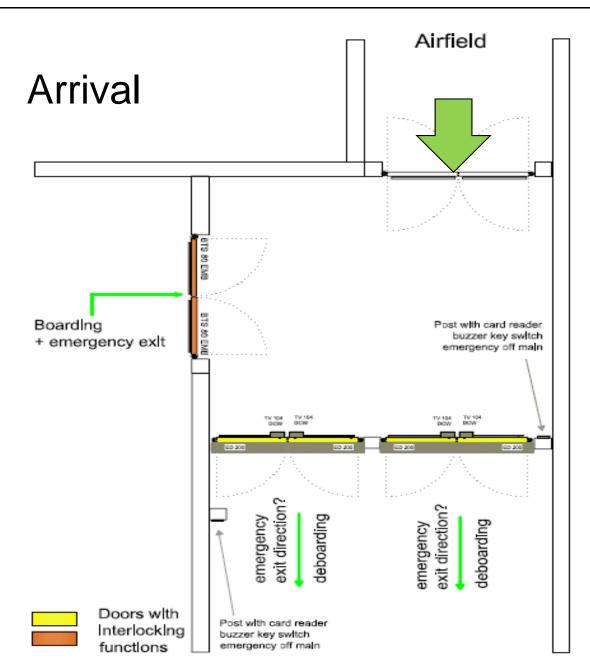
2 - TOP of BOTTOM RAILS 100 MM, STEMINIERS STEEL

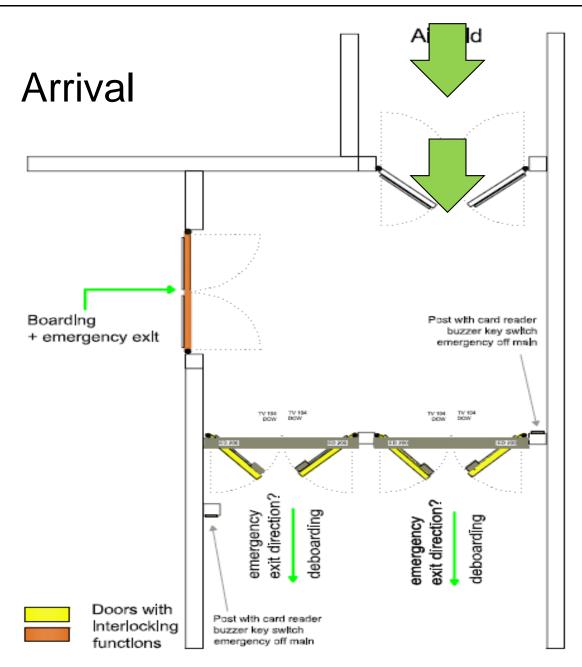
(3) - Floor PIVOTS

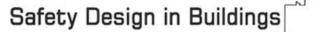
(4) - EMDE-1000 DELAYED EGRESS MAG. LOCKS (PUSH SIDE)

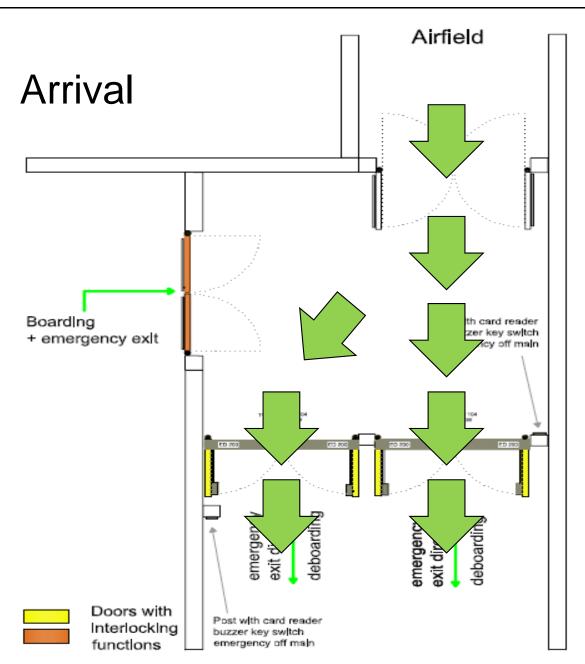
(B) - FOLGER ADAMS ELECTRIC STRIKE (BOTH FAIL SAFE &
FAIL SECURE AVAILABLE) - (PULSIDE)

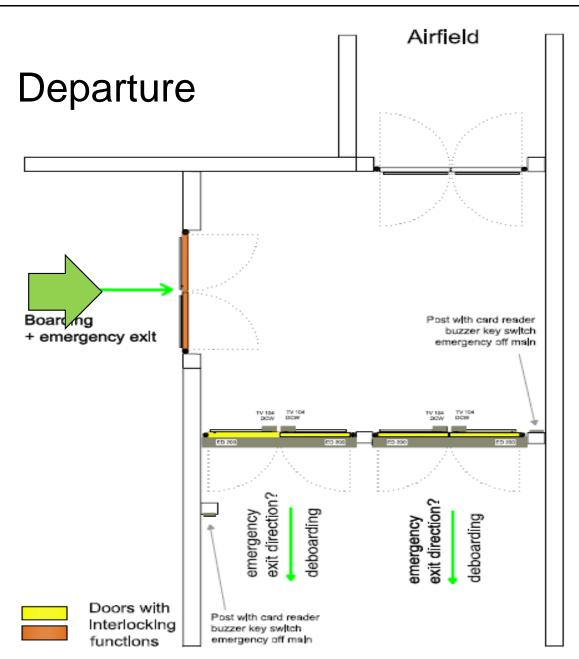
6 - ED 260 SWING DOOR OPERATOR. (PUSH SIDE OR PULL SIDE - AVAILABLE)

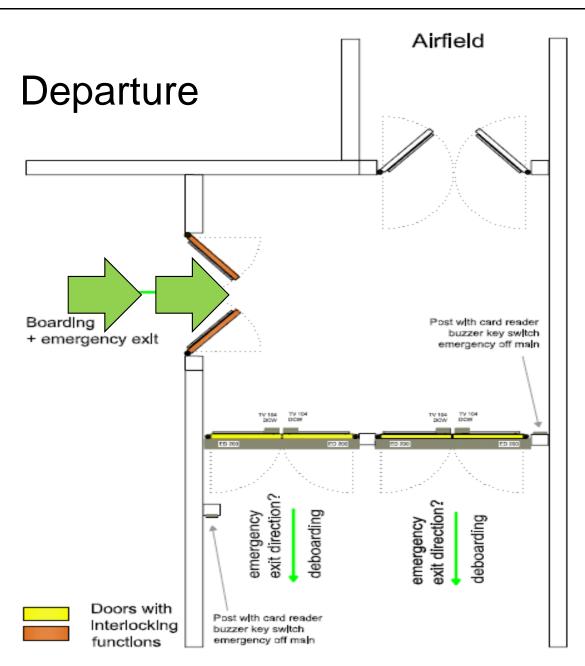








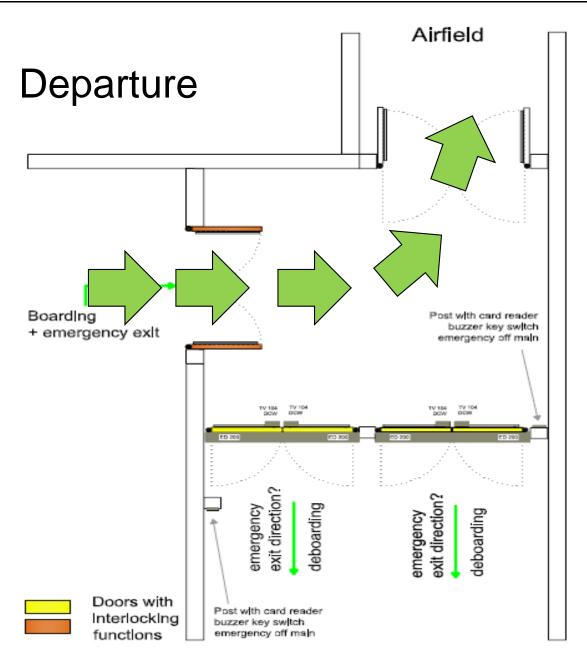




in Architectural Openings

Aligning Safety, Security and Aesthetics

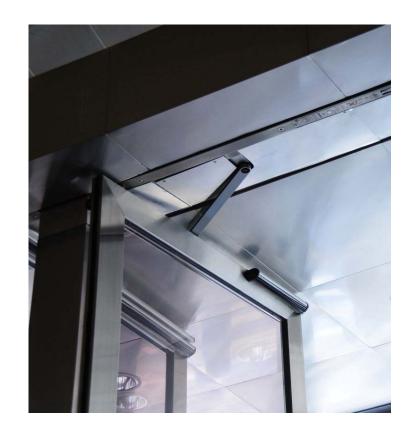
Case Study Dubai Airport T3 Arrival/Departure doors



Case Study Dubai Airport T3 Arrival/Departure doors

Gold souk at Mall of Dubai

- 750 kg Heavy, Automatic Sliding door
- Dead-man switch

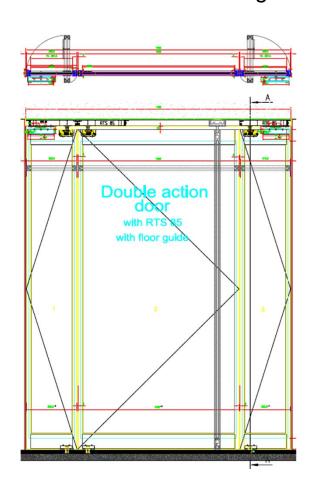


Aligning Safety, Security and Aesthetics in Architectural Openings

Armani Entrance Swing Door Operators:

INFRARED-SENSOR

...



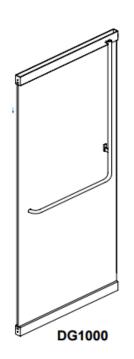




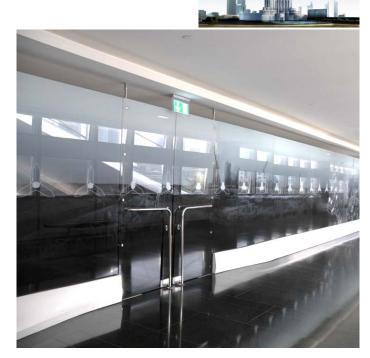
Smoke Evacuation Corridor Glass Doors:

At every floor, the corridor doors had to be escape doors from the 3 wings of the building to the central lobby, which cannot be locked at any point of time. Additionally, they had to also OPEN to 90 degrees automatically to allow smoke evacuation.

Aligning Safety, Security and Aesthetics in Architectural Openings


Frameless Glass Exit doors:

Many areas of the lobbies and Armani Prive, demanded elegant frameless glass doors, with no bulky hardware, yet to satisfy codes for escape routes.


We used DORMA DG 1000 series exit devices, with aesthetic stainless steel tubular designs, and floor concealed BTS 80 floor closers, with top and bottom stainless steel rails.

Where access control was needed to allow authorized users in, concealed electric strikes in the header, in tandem with the top latches of the DG 1000 series exit devices, completed the solution.

Aligning Safety, Security and Aesthetics in Architectural Openings

Case Study Burj Khalifa – Guest room doors

Muscat Conference

Crowne Plaza Muscat, Tuesday, December 8, 2015

Aligning Safety, Security and Aesthetics in Architectural Openings

Altaf A. Afridi

Regional Marketing Director – MENA, DORMA

Email: altaf.afridi@dorma.com

Thank you