

Doha Conference Renaissance Doha City Center Hotel June 17, 2014

Optimization of Intumescent Fireproofing Via Structural Analysis

Alex D Tsiolas

Fire Engineer

Learning Objectives / Overview

Structural Fire Protection

- Fire Resistance Ratings
- Fire Testing Standards
- Specification of Intumescent Fire Protection

What is Structural Fire Engineering

- Critical Core Temperature
- Prescriptive vs Performance Based Fireproofing
- Fireproofing Optimization

Benefits of Structural Fire Engineering

- Robust and Safe Designs
- Quantified Structural Fire Performance
- Cost Optimization

Presenter Bio – Alex D Tsiolas

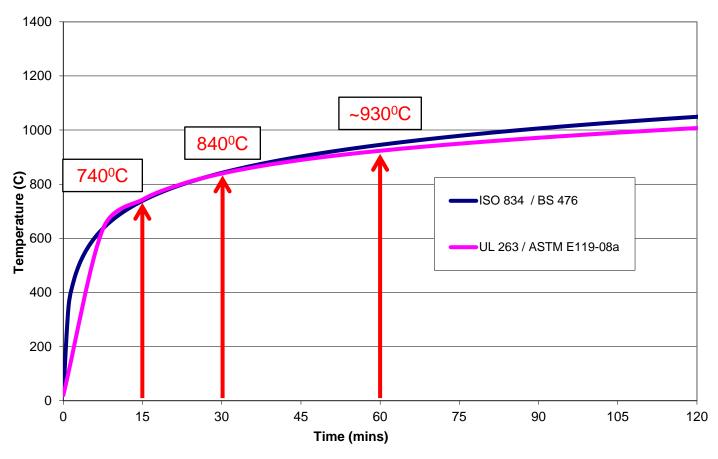
Structural Fire Engineering Expertise

- BEng in Civil & Structural Engineering
- MSc in Structural Dynamic
- MSc in Fire and Blast Engineering

Expertise in:

- Intumescent Fire Protection
- Fire Protection System Design
- Fire Safety Codes
- Fire Testing and Product Certification
- Heat Transfer Modelling
- Structural Fire Design

Structural Fire Protection



How is a fire defined in a building?

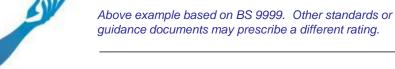
Fire Time / Temperature Relationships

Design Codes and Standards

- There is a wide range of International fire safety codes that define all aspects of fire design in a building, including the structural fire resistance rating: -
 - NFPA 101 Americas, Canada and Middle East
 - International Building Code Americas, Canada and Middle East
 - Approved Document B England and Wales
 - British Standards: BS 9999 UK

How are Fire Resistance Ratings Set?

Use	ve	re resistance entilation co	onditions)				dent of	
Use	Sprinklered or Minimum periods of fire resistance, in minutes unsprinklered ^{B)}							
		Depth below access level of lowest basement		Height [©] of top occupied storey above acc level				
		More than 10 m	Not more than 10 m	Not more than 5 m	Not more than 18 m	Not more than 30 m	More than 30 m	
Office	Unsprinklered	90	60	30	60	90	Not allowed	
	Sprinklered	60	60	30	30	-60 >	120	
Industrial: high hazard	Unsprinklered	N/A D)	120	90	120	150	Not allowed	
	Sprinklered	150	90	60	90	90	120	
Industrial: ordinary	Unsprinklered	N/A ^{D)}	120	60	90	120	Not allowed	
hazard	Sprinklered	90	60	30	60	60	90	
Industrial: low hazard	Unsprinklered	90	60	30	60	90	Not allowed	
	Sprinklered	60	30	30	30	60	60	
Storage: low hazard	Unsprinklered	90	60	30	60	90	Not allowed	
	Sprinklered	60	30	30	30	60	60	
Car parks:								
– open-sided car park	Unsprinklered	_	_	15 ^{E)}	15	30	30	
– any other car park	Unsprinklered	90	60	30	60	90	120	
Shops and commercial	Unsprinklered	90	60	60	60	90	Not allowed	
	Sprinklered	90	60	30	60	60	120	


Fire resistance ratings are typically set by an architect or engineer using a simple look-up table.

Ratings are based on: -

- Occupancy use (risk of fire)
- Height of the structure (for evacuation and access for fire-fighters)
- Provision of a suppression system (may act to control a fire)

Example: Office building, 100m high with a sprinkler system

Rating: **120 minutes** for load-bearing elements of structure

X.International.

Fire Resistance Ratings

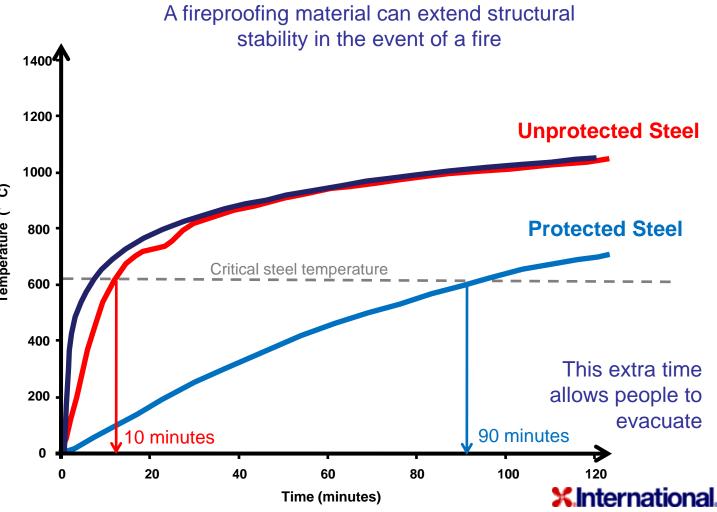
Defining a Fire Resistance Rating

- At 120 minutes for example, what is the acceptance criteria..?
 - o "Structural stability shall be maintained for a reasonable period of time..."
- Limiting steel temperatures
 - Associated closely to the Approval Standard
 - UL 263 / ASTM E-119: 538°C [1000°F] or 593°C [1100°F]
 - BS 476: 520°C, 550°C, 620°C (Guidance)
- Typical rating: 620°C at 120 minutes (for a beam)

SCI 4th November 1997: "The existing temperatures of 550°C and 620°C are acceptable for most circumstances, but they are not always conservative."

Fire Test Codes and Standards

- The design codes call for protection to elements of structures to be tested in accordance with one of a number of fire test standards, including: -
- O UL 263 / ASTM E-119 Americas, Canada & Middle East
- BS 476: Part 21 UK, Brazil, South East Asia, Belgium, New Zealand, Middle East
- O EN 13381 Mainland Europe
- AS 1530.4 Australia
- GB 14907 China
- GOST Russia



Fire Protection Concept

Intumescent coatings 1200 **Boards** 1000 ပ Femperature (° 800 Cementitious sprays 600 400 Insulation blankets

Specification of Intumescent Fire Proofing

Selecting a Thickness of Paint

How do Suppliers Establish a Thickness of Intumescent?

Typically the following information is required: -

Standard for approval:
 e.g. BS 476: 20-22

• Fire resistance period: e.g. 60 minutes

Structural section:
 e.g. I-beam

• Degree of exposure: e.g. 3-sided with a concrete slab on top

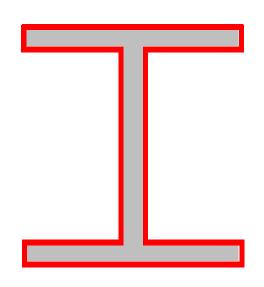
Limiting steel temperature: e.g. 620°C

Steel section: e.g. UB 406x178x74

From these a supplier can determine a dry film thickness (DFT) of paint for a range of products that have 3rd party accreditation.

Further information can tailor a specific product for a project

- Environmental exposure degree of corrosion
- Durability requirements



Section Factor

 The rate of temperature increase of a steel cross-section can be determined by the ratio of the heated surface perimeter to the area of the cross section

A: Area of steel cross-section (m²)

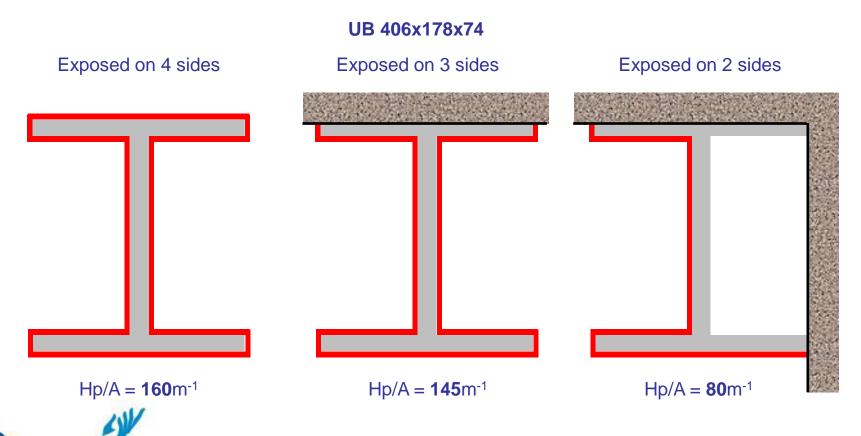
H_p: Length of heated steel perimeter (m)

Example

UB 406x178x74: Exposed on 4 sides

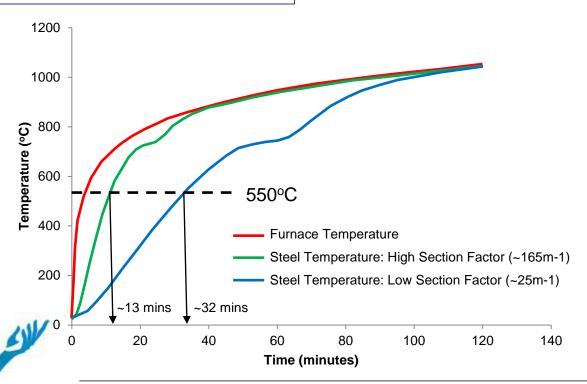
Heated perimeter, $H_p = 1.51$ m

Cross-section area, A = 0.00945m²


Section Factor,
$$H_p/A = \frac{1.51}{0.00945} = 160 \text{m}^{-1}$$

Section Factor

The section factor for a given structural steel component will change depending upon the heated perimeter value



Section Factor – Hp/A = A/V How steel heats up

Slender Sections: High Section Factor
 Heat relatively quickly when unprotected

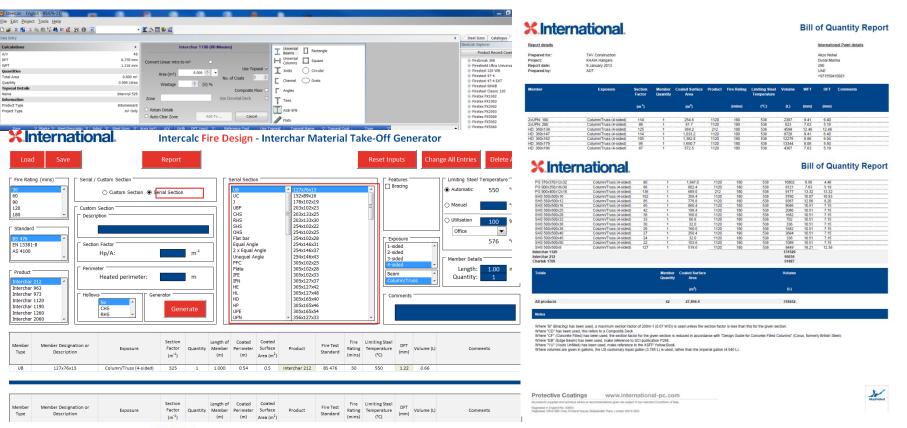
Stocky Sections: Low Section Factor

Heat relatively slowly when unprotected

Selecting a Thickness of Paint

How do Suppliers Establish a Thickness of Intumescent?

		2 <u> Table</u>	e 6. 1-3ecuo	n Beams	620 C			
30 minutes			60 minutes (3)				90 minutes	
Section factor up to m1	Thickness mm	Section factor up to m1	Thickness mm	Section factor up to m1	Thickness mm	Section factor up to m1	Thickne mm	
290	0.275	30	0.280	170	0.533	60	0.582	
295	0.281	35	0.282	175	0.547	65	0.627	
300	0.286	40	0.284	180	0.561	70	0.671	
305	0.291	45	0.285	185	0.575	75	0.716	
310	0.297	50	0.287	190	0.589	80	0.760	
315	0.302	55	0.289	195	0.603	85	0.805	
320	0.308	60	0.290	200	0.618	90	0.849	
		65	0.292	205	0.632	95	0.894	
		70	0.294	210	0.646	100	0.938	
		75	0.296	215	0.660	105	0.983	
		80	0.297	220	0.674	110	1.027	
		85	0.299	225	0.707	115	1.072	
		90	0.306	230	0.751	120	1.116	
		95	0.320	235	0.796	125	1.161	
		100	0.334	240	0.840	130	1.205	
		105	0.348	245	0.885	135	1.250	
		110	0.362	250	0.929	140	1.295	
	1	115	0.377	255	0.974	145	1.339	
	1	120	0.391	260	1.018	150	1.384	
	1	125	0.405	265	1.063			
	1	130	0.419	270	1.108			
	1	135	0.433	275	1.152			
	1	140	0.447	280	1.197			
]	145	0.462	285	1.241			
	1	150	0.476	290	1.286			
		155	0.490	295	1.330			
	(4))	160	0.504	300	1.375			
	\ ¬ /	165	0.518					



Selecting a Thickness of Paint

Steel BOQ → MTO

Structural Fire Design

Safety Design in Buildings

17th June 2014

Selecting a Thickness of Paint

How do Suppliers Establish a Thickness of Intumescent?

Typically the following information is required: -

• Standard for approval: e.g. BS 476: 20-22

Fire resistance period:
 e.g. 60 minutes

Structural section:
 e.g. I-beam

• Degree of exposure: e.g. 3-sided with a concrete slab on top

• Limiting steel temperature: e.g. 620°C

• Steel section: e.g. UB 406x178x74

From these a supplier can determine a dry film thickness (DFT) of paint for a range of products that have 3rd party accreditation.

Further information can tailor a specific product for a project

- Environmental exposure degree of corrosion
- Durability requirements

Structural Fire Engineering

The critical core temperature can be defined as the temperature that the steel will reach whilst still maintaining enough strength to carry an amount of load and thus prevent collapse.

This is not the temperature at which the structure will actually collapse.

Fireproofing manufacturers expect this to be provided in tenders, but it never is...

Prescriptive Design Approach

Prescriptive design does not consider the amount of actual load on a structural element, but assumes a fixed reduction factor approach sometimes known as fixed load ratio approach..

Load ratio Load or moment at time of fire Member strength at 20°C

In the UK prescribed design assumes that an unprotected steel column will fail when its temperature reaches 550°C (1022°F) equating to a reduction factor of 0.6.

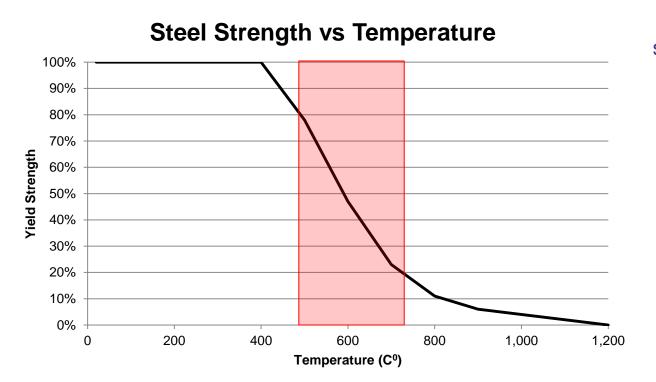
Similarly a temperature of 620°C will cause the failure of an unprotected steel beam supporting a concrete floor.

Prescriptive Fire Protection

Steel Utilization (e.g. 60%) >> Steel Utilization (e.g. 80%)

Limiting Steel Temperature == Limiting Steel Temperature

Fire Protection Thickness == Fire Protection Thickness



Structural Fire Engineering

Understanding Structural Engineering & Steel

Assumes that the steel is loaded to a certain stress

Is this always the case?

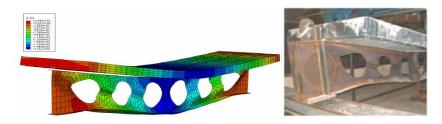
Analysis at the Fire Limit State

Performance Based Fire Design

Steel Utilization (e.g. 60%) >> Steel Utilization (e.g. 80%)

Limiting Steel Temperature >> Limiting Steel Temperature

Fire Protection Thickness << Fire Protection Thickness



Structural Fire Engineering

- A limiting steel temperature for each member can be determined by a number of different calculations
 - Tensile or buckling resistance for tension or compression members
 - Moment and shear resistance for beams
 - Lateral torsional buckling resistance moment for beams
- Beams with web openings have even more modes of failure to consider...

Structural Fire Engineering and Fireproofing Solutions

Multi-Temperature Assessment Data (MTA)

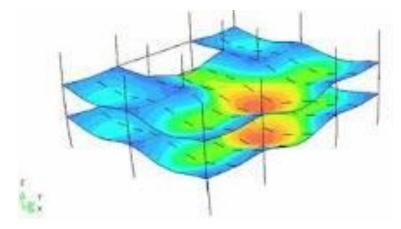
- UK and European fire testing methods (BS 476: 20-22 and EN 13381) make allowance for varying limiting steel temperatures
- US test methods work to a single 538°C [1000°F] or 593°C [1100°F] limiting temperature

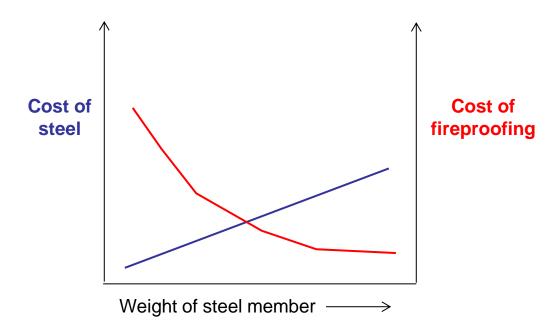
	Table 1: I-Section Beans 400°C							
	30 mi	60 minutes						
Section factor up to m ⁻¹	Thickness mm	Section factor up to m ⁻¹	Thickness mm	Section factor up to m ⁻¹	Thickness mm			
120	0.275	225	0.475	30	0.478			
125	0.285	230	0.484	35	0.513			
130	0.294	235	0.494	40	0.548			
135	0.304	240	0.503	45	0.583			
140	0.313	245	0.513	50	0.617			
145	0.323	250	0.522	55	0.652			
150	0.332	255	0.532	60	0.687			
155	0.342	260	0.541	65	0.722			

Table 2: I-Section Beams 450°C
Table 3: I-Section Beam 500°C
Table 4: I-Section Beam 550°C
Table 5: I-Section Beam 600°C
Table 6: I-Section Beams 620°C
Table 7: I-Section Beams 650°C
Table 8: I-Section Beams 700°C
* Internation

Structural Fire Engineering - Example

	Member Analysis	Section Factor Hp/A	Steel Temperature θ	Dry Film Thickness	No of Coats	Fire protection material saving
1	UKC 202×203×46 Industry standard temperature	200 /m	550°C	3.129mm	5	0%
2	UKC 202x203x46 Limiting temperature for a given applied loading	200 /m	576 ⁰ C	2.816mm	4	10%
3	UKC 202x203x86 Limiting temperature as in 2 but with serial weight increased from 46 kg/m to 86 kg/m	110 /m	673 ⁰ C	1.27 mm	2	59%
4	UKC 202x203x46 Limiting temperature as in 2 but steel yield strength increased from 235 N/mm² to 355 N/mm²	200 /m	639 ⁰ C	2.213 mm	3	29%




Structural Fire Engineering Optimisation

Optimisation

- Optimisation of steelwork and fire protection combined
- Large opportunities for designers to show up-front savings to their client – provided costs are accurately quantified

In some instances, steel can be cheaper than fireproofing materials

X.International.

Structural Fire Engineering DO's & DON'Ts

DO

- Optimize fire proofing based on project requirements
- Question basis of temperature selections
- Question product limitations Hp/A & Temperatures

DON'T

- Don't accept material thicknesses without certifications
- Don't accept increased limiting temperatures without a report
- Don't accept anything that is not understood!!!

Benefits of Performance Based FP Design

Safe and Robust Designs in Buildings

- Demonstrate building integrity in a fire
- Identify potentially weak areas

Quantified Structural Performance

- Understand the limitations of steel at elevated temperatures
- Enable performance based design
- Add value in design

Benefits of Performance Based FP Design

Cost Optimization

- Enable performance based design of fire protection materials
 - Optimized construction material usage
 - Steel optimized on par with PFP to ensure max value
- Reduced number of coats resulting in faster preparation times
- Reduced scaffolding times
- Reduced erection times
- Reduced manhours on site

Summary

Intumescent Coatings

- Structural Fire Proofing
- Data Required for system design
- Process to establish material thicknesses/volumes

Structural Fire Design

- Critical core temperatures
- Steel behaviour at elevated temperatures
- Calculation of optimum steel temperatures

Benefits of Fire Design

- Promoting safe design in buildings
- Fire limit state should be treated as an important load case
- By addressing fire protection in early stages of design significant costs savings can be demonstrated

Doha Conference

Renaissance Doha City Center Hotel June 17, 2014

Thank you for your attention

